What is a polycarboxylate superplasticizer

In 2023, the China Greater Bay Area Concrete Industry High-Quality Development Seminar and the Expo on Concrete Equipment and Technology will take place at the Guangzhou Canton Fair Complex. Guangzhou Canton Fair Complex. The conference's theme will be "Gathering Talents and Gathering Power, Talking about Smart Concrete," co-sponsored by the Guangzhou Concrete Industry Association and Guangdong Hongwei International Exhibition, responsible persons from the Guangzhou Municipal Bureau of Housing and Urban-rural Development, Municipal Bulk Cement and Building Energy Conservation Management Center as well as Concrete Industry Experts as well as representatives from downstream and upstream companies participated at the show.


A concrete core sample 200 millimeters in diameter and an overall long 25.3 meters was successfully removed from the RCC gravity dam in the Fengshan Reservoir Project in Qiannan Buyi and Miao Autonomous Prefecture, Guizhou Province, China. The length of the core sample is the longest among water conservancy projects within Guizhou Province, marking that the quality of construction and technology of the dam in the Fengshan Reservoir Project has reached the top standard.

The concrete pouring for the first warehouse at the Qishi Junction of the Pinglu Canal in China has started, which signifies that the three main points of operation for the Pinglu Canal have entered a new phase of building the main structure. This Pinglu Canal is the backbone of the land-sea channel that runs through the west. When it is finished and open to navigators, the canal will let the world's narrowest, most cost-effective, and most efficient ocean channel between Guangxi and Southwest China.


1. What is a polycarboxylate superplasticizer?

Polycarboxylate superplasticizer is used primarily in cement concrete to act as a dispersant. It is composed of polymers containing sulfonic acid group (-SO3H) and carboxyl groups (-COOH) or derivatives of them and features high efficacy, environmental protection, and security.

The role of a polycarboxylate superplasticizer is primarily to disperse cement particles more evenly by adhering to concrete particles' surfaces, decreasing the amount of water needed, and increasing the strength and flexibility of concrete in the process. Compared to traditional water-based water-reducing agents, polycarboxylate agents have a higher water reduction rate and workability that can significantly enhance the performance and strength of concrete.


2. Superplasticizers that are applied to polycarboxylate.

Polycarboxylate Superplasticizer is commonly employed in cement concrete as a dispersant. Apart from its use in bridges, highways, tunnels, dams, high-rise buildings, and various other engineering areas, it is extensively utilized for grouting, pouring material such as anchoring, plugging the waterproof mortar K11 cement self-leveling, prefabricated components, special mortars, and various other construction materials. The applications of polycarboxylate superplasticizers in these areas will be described below.


1. Highway Engineering

In highway engineering, superplasticizers made of polycarboxylate are used to make high-performance highway concrete, which can increase durability and wear endurance on the surface of roads. The superplasticizer polycarboxylate's water-reducing capacity can significantly reduce water consumption in concrete, increase concrete's strength and flexibility, and make the road surface more dense, smoother, other, smoother, and more robust. The use of polycarboxylate superplasticizers in highway engineering will fulfill the highway construction's safety, green, and durability demands.



2. Bridge Engineering

When it comes to bridge design, superplasticizers made of polycarboxylate can be used to create bridge concrete with great strength and fluidity to increase bridges' bearing capacity and service life. The high water-reducing capacity and high workability of the polycarboxylate superplasticizers can significantly enhance Bridge concrete's performance, increase the uniformity and compactness of concrete, lessen the formation of bridge cracks, and consequently increase the longevity and safety of bridges.


3. Dam Project

When it comes to dam design, superplasticizers made of polycarboxylate are used to make high-strength, high-impermeability dam cement to increase the stability and security of the dam. Dams are an essential structure that stores water resources and manages water flow. It also has demanding requirements for the stability and safety that the dam. Utilizing polycarboxylate superplasticizers will increase the resistance and impermeability of concrete dams and effectively stop cracks and leakage, improving the dam's stability and security.

4. Tunnel Engineering

Tunnel engineering is a field where superplasticizers of polycarboxylate are used to make high-strength and high-impermeability tunnel concrete to increase the durability and stability of the tunnel. Tunnels are crucial underground structures used for transport and transport, so the requirements for durability and stability of tunnels are demanding. Using superplasticizers made from polycarboxylate will increase the durability and strength of tunnel concrete. It can effectively stop cracks and leaks, improving the tunnel's durability and stability.


5. High-rise buildings

In high-rise structures, Polycarboxylate superplasticizers are employed to make high-strength, highly-fluidity concrete for high-rise buildings to improve the safety and stability of structures. Because of the number of floors and the high building heights, their requirements for the strength of the structure and seismic performance of buildings are extremely significant. Utilizing polycarboxylate superplasticizers will enhance the strength and flexibility of high-rise concrete. It can significantly improve the strength of structures and the earthquake performance of structures, increasing the stability and security of structures.


6. Material pouring, grouting anchoring, plugging, and many more fields.

Apart from its use in engineering fields like dams, bridges, road tunnels, and high-rise structures, polycarboxylate superplasticizers are extensively used in construction materials, such as grouting agents and pouring materials, as well as anchoring and plugging. In these areas, the function of superplasticizers made from polycarboxylate is mostly by adsorption on the surfaces of cement particles, ensuring that the cement particles become more evenly distributed, thus reducing the quantity of water needed while at the same time improving the quality and consistency in the materials. These applications can fulfill various specific maintenance and construction requirements.


How do you make polycarboxylate superplasticizers?

Polycarboxylate superplasticizer is extensively utilized in cement concrete to act as a dispersant. The process of making it can be broken down into the steps below:


synthetic macromonomer

It is first necessary to create macromonomers. This is one of the primary processes in producing superplasticizers from polycarboxylate. The macromonomer is the primary component of the superplasticizer polycarboxylate that has polymer chains and polar company and can be adsorbed on the surfaces of cement particles to be superplasticizers. The most popular method used is free radicals' polymerization; the primary raw materials include unsaturated acids, such as methacrylic acid, acrylic acid, and maleic acid, and polymers like polypropylene glycol and polyethylene glycol. In the process of synthesis, it is crucial to regulate the temperature of the reaction and time, as well as the proportion of ingredients and other variables, to ensure the yield and quality of the macromonomer.


Polymerization

Once the macromonomer has been synthesized, a polymerization reaction is necessary. The polymerization reaction will react to the macromonomer using an oxidizing agent, such as ammonium persulfate, to create one with a higher level of polymerization. When performing this procedure, it is important to be aware of variables like reaction temperature and the time and quantity of oxidant used to ensure the polymerization process's efficiency as well as the quality of the product.


Post-processing

After the polymerization reaction is complete, post-treatment is needed. The post-treatment process involves dissolving the water and polymer to the ratio specified, adding acidic compounds for neutralization, adjusting the pH that the solution has, and then the addition of a protective colloid as well as other components to produce the final superplasticizer made of polycarboxylate. It is essential to regulate the amount of solution, the pH value, the kind and amount of protective colloid, and other variables to guarantee the quality and effectiveness of the solution.


4. Market prospects analysis of superplasticizer polycarboxylate

Due to the rapid growth in the field of construction, demand for polycarboxylate superplasticizers is growing, and the opportunities are vast. This article will examine the potential market for superplasticizers made from polycarboxylate based on the demand for market products, the policy environment, technological advancement, competition patterns, and the latest trends.

 

1. Market demand

As urbanization is accelerating and the continued development in infrastructure development, the demand for cement concrete has been growing each year, driving the demand for superplasticizers made of polycarboxylate. Polycarboxylate superplasticizer offers the benefits of an excellent water-reducing capacity, a high working capacity, a lower shrinkage rate, and so on. It can also significantly enhance the performance and durability of concrete. This is why it is extensively used in engineering areas such as bridges, roads, dams, tunnels, and high-rise structures. A lot of people use it. As the years progress, due to the constant advancement in infrastructure construction and the constant improvement in the quality of buildings, the need for polycarboxylate superplasticizers will continue to increase.


2. Policy environment

After the pandemic struck the world, various policies for improving the construction industry have been introduced, and across the globe are now recognizing the importance of infrastructure to spur economic development. One of them is the Chinese "Outline for the Modernization of the Construction Industry," which recommended that by 2030, the size of the construction industry would reach the target of around 20% of the nation's GDP. In the meantime, China's standards for environmental protection and conservation of energy are getting strict, and this provides an incentive for policymakers to develop superplasticizers that are made of polycarboxylate. Similar policies have been enacted across China to encourage and facilitate the manufacturing and utilization of polycarboxylate superplasticizers. Also boosting demand for superplasticizers made of polycarboxylate.


3. Development of technology

With the constant advancement of new technology and science, polycarboxylate superplasticizers' manufacturing technology and performance are constantly upgraded. Today, superplasticizers made by polycarboxylate manufacturers from around the globe are continuously pursuing technological research, development, and development and have introduced an array of brand new superplasticizers made of polycarboxylate including high water-reducing models and high slump retention varieties and those with low shrinkage. Wait. Introducing these products will further expand the scope of polycarboxylate superplasticizers' applications and market spaces.


4. Competitive landscape

The polycarboxylate superplasticizer market has developed into a remarkably competitive pattern of fierce competition. Certain well-known and well-known foreign construction materials firms are using the market for polycarboxylate superplasticizers and launching various items and products. However, smaller companies are also gaining entry into the market, and competition is growing increasingly fierce. In today's competitive market, businesses must continue to increase their service and product quality levels and cut production costs to gain market share.


5. Trends

Shortly, due to the constant growth within the industry of building the market for superplasticizers made from polycarboxylate will be able to present these trends.

High performance In developing engineering requirements, the performance of polycarboxylate superplasticizers has to be continually improved to meet the needs of high-performance concrete.

Protection of the environment: As environmental protection requirements and energy efficiency are becoming increasingly demanding, polycarboxylate superplasticizers must be more eco-friendly and energy-efficient.

Customization Diverse concrete fields and industries require different kinds of superplasticizers made of polycarboxylate to ensure that consumers will accept personalized polycarboxylate products.

Intelligent: With the advancement of technologies for information and intelligence, the next polycarboxylate superplasticizer will be more sophisticated and capable of achieving automatic production and intelligent use.

In the end, the potential for market share growth for superplasticizers made of polycarboxylate is huge. However, it is necessary for businesses to constantly improve the quality of their services and products to satisfy the changing demands of the market and to adapt to changes. In the meantime, continuous technological research, as well as innovation and advancement, are vital to meet the market's needs and predict future growth trends.

Why does properly poured concrete end up cracking

It is very easy to cause concrete cracking if the construction or maintenance are not done correctly. What are then the five main causes of cracking concrete?

1. The cement problem: Some workers in construction will privately add more water for a more fluid concrete. However, this will result in an increase in water-cement, resulting in a hardening of concrete strength that is insufficient, and the cracking phenomenon.

2. Transport and mixing issues: If mixing and transporting concrete takes too much time, the water in the concrete will evaporate quickly. concrete . This leads to a concrete that is weaker on the construction site, unable to meet construction specifications.

3. Construction speed

4. Maintenance is unreasonable. During the period of maintenance, if late watering isn't maintained, the result will be the Cracking phenomenon Later in the year, concrete will be used. Concrete is used in the future. Concrete Surface Watering You can water the concrete often to speed up the drying process. Concrete will shrink if it is not watered. Late cracking occurs when concrete strength is decreased.

5. Environmental factors: If the environment at the construction site is relatively dry and there is high temperature, wind, or both, then the evaporation rates of the concrete are accelerated. This results in cracking on the surface. Concrete constructions are most likely to crack in the winter or summer because of the temperature difference.

Add an anticracking agent. A variety of inorganic composite materials can prevent cracking more than 80% foam concrete. Add 2-3 kilograms of anticracking agent per cubic meter.

What is Molybdenum disulfide MoS2 powder

Description of Molybdenum diulfide

Molybdenum sulfide (also known as MoS2) is a transition metal sulfide. It is dark grey, or black solid. The layers of the crystal structure are made up of alternate arrangements of sulfur and Molybdenum. Molybdenum disulfide This material is both chemically and thermally stable. It can be easily reacted to acids or bases. It is widely used in lubricants as well as additives and composite materials. As a great lubricant molybdenum diulfide offers a high load bearing capacity, low friction coefficient and good friction resistance. This is why it's widely used by the machinery, petrochemicals and automobile industries. In extreme conditions such as high temperature, high loads, or high speeds, the molybdenum diulfide plays a lubricating function, reducing friction and wearing, and extending the service life. The molybdenum diulfide used in fuel can be added to increase the fuel's combustion efficiency, and also reduce pollutants. This additive plays a major role in protecting the environment, as it reduces air pollutants and improves energy efficiency.

Use of Molybdenum diulfide

Molybdenum diulfide is a compound that has outstanding chemical and physical properties. It is widely used in many fields. It has excellent chemical and mechanical properties. Following are some of the most important applications for molybdenum sulfide.

Lubricants: Molybdenum diulfide, a lubricant that is excellent in terms of friction resistance and load capacity with a low coefficient of friction, is a good lubricant. It has a high lubrication capacity in extreme conditions such as high temperatures, high loads and high speeds. This makes it a popular lubricant in industries like automobile manufacturing, machinery manufacturing and the petrochemical sector. Molybdenum Disulfide Lubricant is also used to produce lubricating grease, lubricating oil and lubricating film.

Additive - Molybdenum Disulfide, when used as a fuel additive, can increase the efficiency of combustion and reduce emissions. This additive plays a major role in protecting the environment by reducing air pollution and improving energy efficiency. As an additive, molybdenum can be added to rubber, plastics or coatings in order to improve their properties.

Composite materials. Molybdenum disulfide, when combined with rubber, resins and other materials, can produce high-performance materials such as composite fibres or reinforced plastics. These composites offer excellent mechanical properties, corrosion resistance, and are widely used for automotives and aerospace.

Electronic Industry Molybdenum disulfide It can be used for the electronic vapour deposition of thin MoS2 films. These thin films have excellent electrical conductivity, and transmit light well. This thin film material is suitable for optoelectronics applications, including solar cells and displays. The molybdenum-disulfide material can also be used to create transistors, Field-Effect Transistors and other electronic parts with high semiconductor performance and good electronic mobility.

Production Methods of Molybdenum Diulfide

Molybdenum diulfide, a compound with excellent chemical and physical properties, is used in numerous fields. The production process can be done in many ways, including double decompositions, flotation and electroplating. Among these, synthesis is the most commonly used method for producing molybdenum.

This method can be used to create nano MoS2 through the reaction of a molybdenum, tungsten source and a sulfur source. This method can produce sulfides of high purity with fewer impurities. This method can prepare sulfides to meet various functional requirements. The steps in the synthesis include preparation of raw materials, chemical reactions, product separation, and purification.

In the stage of raw material preparation, it is necessary to prepare a tungsten source or a molybdenum one. Tungsten, molybdenum or metal powders are the most common sources. While sulfur can be either elemental sulfur or sulfur dioxide. The purity, chemical properties and reactions conditions of the raw materials are important factors to consider when selecting tungsten and molybdenum or sulfur sources.

During the chemical reaction, tungsten is converted into tungsten or Molybdenum Sources The molybdenum is disulfide produced in biochemical reactions that occur at high temperatures. The reaction temperature, the reaction time, and the reaction atmosphere are all part of the specific conditions. The temperature and reaction time of a reaction have an important effect on particle size and product purity. Reaction atmosphere has a similar impact.

In the stage of product separation and purity, molybdenum isulfide has to be separated from reaction products with the help of appropriate separation and cleansing methods. Precipitation, filtration and distillation are some of the most common separation and purification processes. These methods can be used to separate the molybdenum diulfide from impurities and obtain molybdenum products with high purity.

Other methods are available to produce molybdenum sulfide. These include the double decomposition technique, the flotation method, and the electroplating method.

The compound decomposition technique produces molybdenum by reacting ammonium motate or ammonium tantate with ammoniumsulfide. The method is able to produce molybdenum sulfide even at a low temperature. It can also prepare different molybdenum sulfide products, such as those with different particle sizes and morphologies.

Flotation is the process of separating molybdenum diulfide by using organic agents and grinding tungsten, molybdenum or other sources with minerals like pyrite or Sphalerite. This method is able to produce molybdenum products with high purity, but requires more organic chemicals and a more complicated production process.

Electroplating is the process of electroplating molybdenum on a metal surface. By using this method you can create molybdenum-disulfide films that have excellent properties. However, the chemicals and waste liquids in the electroplating will pollute the surrounding environment.

It is important to select the best production method for the job based on the demand. It is also important to consider environmental protection and safety during the production process.

Prospect Market of Molybdenum Diulfide

Molybdenum diulfide is an important chemical compound that has excellent chemical and physico-chemical properties. It's widely used in the fields of machinery, industry, electronics, aviation, and other industries. Demand for molybdenum diulfide has increased due to the growth of the global market and rapid development in high-tech industries. Molybdenum Disulfide Market has a wide range of prospects for the future.

Molybdenum Disulfide, as a highly-performance lubricant used in petrochemical, machinery manufacturing and automobile manufacturing is widely used. As industrialization continues and mechanical equipment becomes more precise and automated, the demand for lubricants will increase. Molybdenum diulfide has a high performance and is in great demand.

In the second place, molybdenum dioxide can be added to fuels as an additive that will improve combustion efficiency, reduce pollution, and help reduce air pollutants. As environmental awareness continues to grow and environmental policies are strengthened, the use of molybdenum dioxide as an additive that is environmentally friendly will continue to be promoted.

In composite materials, molybdenum diulfide, resins, rubbers and other materials can be combined to produce high-performance materials such as reinforced fibres, composite plastics etc. These composites have excellent mechanical and corrosion-resistant properties and are widely used by the automotive, aerospace, electronic and other industries. High-performance materials are in high demand due to the rapid growth and development of the high-tech industry. Molybdenum is one component and will see a rise in its demand.

The molybdenum-disulfide compound can be used to create new energy sources, including solar cells, energy storage batteries, and other energy technologies. As new energy technologies continue to be developed, demand for molybdenum will increase. This will provide new momentum for the development of the market.

In addition, as the production process is continuously improved and costs are reduced, the price for molybdenum will continue to fall, which will encourage further market growth. In parallel, as environmental awareness increases and technological progress continues, new production technologies and processes will be introduced to the production process of molybdenum. This will further promote the growth of the molybdenum market.

According to a recent report from a market-research company, global molybdenum sulfide sales will grow at ten percent per year in the coming years. Globally, it is estimated that the molybdenum-disulfide industry will surpass $1 billion in 2025. China is a big producer and user of molybdenum, so the market will continue to grow rapidly.

Molybdenum disulfide Powder Price :

Many factors influence the price, such as the economic activity, the sentiment of the market and the unexpected event.

You can contact us for a quotation if you want to know the current price of Molybdenum diulfide powder.

Molybdenum disulfide Powder Supplier :

Technology Co. Ltd. has been a leading global chemical supplier & manufacturer for over 12 years.

Chemicals and nanomaterials of high quality, including silicon powder, graphite or nitride, zinc, boron, zinc sulfide.

Send us an email if you want to know more about our high-quality Molybdenum diulfide powder.

What is Boron carbide

Boron carburide is a high-performance carbon compound, which is composed primarily of boron, carbon, and other elements. The chemical formula for B4C is B4C. It is widely used by industries, the military, aerospace and other fields because of its characteristics, such as high melting point and high heat transmission. The article will give a detailed description of the physical properties and chemical composition, as well as preparation methods, performance characterisation, and applications fields, allowing for further research in other fields.

Physical properties

Boron carbide, a non-metallic inorganic material, has a mass density of 2.52g/cm3. It has a cubic lattice structure, a black lustre, and a density of 2.52g/cm3. Boron carbide exhibits a low electrical conductivity of only 10-6S/m, and has excellent insulation. It has a thermal conductivity of 97W/m*K. This is lower than metals, silicon and ceramics but higher than glass and other materials.

Chemical properties

Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in high-temperature, corrosive environments.

Preparation method

Preparation methods for boron carbide The main methods are the carbon thermal decomposition method, arc melting and chemical vapour deposit method.

Methode de réduction du carbothermal

The carbon thermal method is widely used to prepare boron carbide . This method generates carbon dioxide and boron carburide by melting boric black and carbon. The reaction formula is B2O3+3C + B4C+CO. The reaction temperature ranges from 1500 to 1700°C. The method has the advantage of being simple, low-cost, and easy to use. However, the boron carbide produced is not of high purity.

Arc melting method

In the arc melting process, graphite electrodes are heated and melted in an arc with boric acid to create boron carbide. The reaction formula is B2O3 + 3C - B4C. The reaction temperature ranges between 18002000 degrees. The boron-carbide prepared using this method is high in purity, with fine particles. However, the process is complicated and expensive.

Chemical vapour deposition method

Chemical vapour deposition uses the reaction of gaseous carbon black and borane at high temperature to create boron carburide. The reaction formula is B2H6+6C + B4C+6H2. Reaction temperature ranges between 1000-1200°C. The boron-carbide prepared using this method is high in purity, with superfine particles. However, the process is complicated and expensive.

Performance Characterization

The performance characterisation of boron carbide The term 'property' is used to describe mainly chemical, physical and mechanical characteristics.

Physical Property

Density, conductivity, and thermal conductivity are the main physical properties of Boron carbide. Among these, the density is 2.52g/cm3, conductivity is 10-6S/m, and thermal conductivity 97W/m*K.

Chemical property

Boron carbide exhibits chemical stability, and it is not reactive to acids or alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for use over a long period of time in environments with high temperatures and corrosive elements.

Mechanical property

Boron carbide's high melting point, hardness and heat transfer make it a popular material in the aerospace, military and industrial fields. Hardness of 3500kg/mm2, melting point 2450, and heat transfer rate 135W/m*K are among the characteristics that make boron carbide so popular in industries, military, aerospace, and other fields.

RBOSCHCO

RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. RBOSCHCO, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions to increase the efficiency of different industries, create value and overcome various challenges. Send an email to sales1@rboschco.com, if you're looking for Boron Carbide.

What is Zinc Sulfide ZnS Product?

Overview of Zinc Sulfide ZnS Powder

Zinc sulfide is an inorganic compound with the chemical formula ZnS. It is a white or yellowish powder that darkens when exposed to sunlight. It is stable in dry air, and will gradually oxidize into zinc sulfate in humid air for a long time. It is usually formed by the action of hydrogen sulfide and zinc salt solution. Zinc sulfide has excellent fluorescence effect and electroluminescence function. In particular, nano-zinc sulfide has a unique photoelectric effect and exhibits many excellent properties in the fields of electricity, magnetism, optics, mechanics, and catalysis.

Physical and chemical properties of zinc sulfide ZnS powder

The chemical bond between Zn and S of zinc sulfide tends to be a covalent bond. The crystal has three different configurations: low temperature type, that is, sphalerite structure, abundant in nature, colorless cubic crystal, Zn, S coordination number is 4, relative density is 4.10. 1020 ℃ High temperature type; high temperature type, namely wurtzite structure, colorless hexagonal crystal, Zn, S coordination number of 4, relative density 3.98, melting point about 1700 ℃. High temperature stable structure of zinc sulfide; high pressure type, namely chloride In the sodium structure, the coordination number of Zn and S is 6, and the relative density is 5.21. There is also a water-based compound, ZnS·H2O, which is a white powder with a relative density of 3.98 and a melting point of 1049 °C. Zinc sulfide is insoluble in water and dilute alkali, insoluble in acetic acid, but soluble in low-concentration strong acids such as hydrochloric acid, releasing hydrogen sulfide. The solubility product of zinc sulfide is similar to the K1·K2 value of hydrosulfuric acid, so the following equilibrium exists in dilute acid:

Zn2+H2S=2H+ZnS

It can be seen that in the strong acid zinc salt solution, the hydrogen sulfide gas cannot obtain zinc sulfide precipitation. Passing hydrogen sulfide gas into the zinc salt solution can get zinc sulfide precipitation, but the precipitation is not complete. Using ammonium sulfide solution as precipitating agent, the zinc ions in the zinc salt solution can be completely precipitated into zinc sulfide. Since the ammonium sulfide solution is alkaline, the acidity of the system can be reduced. In industry, the above method should be used to isolate the air. White zinc sulfide darkens when exposed to light, and is easily oxidized to zinc sulfate in the air. Zinc sulfide can be used alone as a white paint pigment or in combination with zinc oxide. Pure zinc sulfide does not emit light. If a trace amount of manganese, copper, and silver are added to the zinc sulfide crystal as an activator, it can emit different colors of fluorescence after being illuminated, called phosphor powder, which is used to make fluorescent screens and luminous paints. Zinc sulfide is also used in leather, enamel, rubber, dye and other industries.

Zinc sulfide is corrosive and toxic. It can irritate the skin. Operators should wear work clothes and protective equipment. The workshop should be well ventilated.

{xunruicms_img_title}

Application of Zinc Sulfide ZnS Powder

1. It can be used as analytical reagent, phosphor matrix, photoconductor material; or used in the manufacture of dyes, coatings, pigments, glass, curing oil, etc.

2. Zinc sulfide is widely used in the production of infrared windows, fairings, and infrared optical components. It has the characteristics of high purity, insoluble in water, moderate density and easy processing. Zinc sulfide has good refractive index uniformity and consistency. It has good image transmission performance in the 8-12μm band, but some parts start to absorb after 10um. In the mid-infrared, transmission is higher, and absorption and scattering increase with shortening of wavelength. Zinc sulfide is highly resistant to harsh environments, with twice the hardness and breaking strength of zinc selenide.

Robust front optics for zinc sulfide thermal imaging systems in the infrared window and thermal band (8 to 14 μm).

Single crystal zinc sulfide is available, but not common. In the usual spectral range, the scattering is very low. It can be used as a high-power laser device under the condition that the bulk absorption and internal structural defects of the material are strictly controlled, and the polishing technology with minimal damage and the coating technology with the highest optical quality are used.

Zinc sulfide oxidizes significantly at 300 ℃, plastic deformation occurs at about 500 ℃, and dissociation occurs at about 700 ℃. For safety reasons, zinc sulfide windows should not be used in normal environments above 250°C.

3. For optical coating targets, X-ray screens, luminous dials with trace amounts of radium or neodymium salts added, TV screens, and paint pigments.

Zinc sulfide ZnS product price

The price of zinc sulfide ZnS products will change randomly due to factors such as production costs of zinc sulfide ZnS products, transportation costs, international conditions, exchange rates, and market supply and demand of zinc sulfide ZnS products. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Zinc Sulfide ZnS products, please feel free to send an inquiry to get the latest Zinc Sulfide ZnS product prices.

Supplier of Zinc Sulfide ZnS Products

As a global supplier of zinc sulfide ZnS products, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced engineered materials. The company has successfully developed a series of powder materials (molybdenum disulfide, tungsten sulfide, bismuth sulfide, etc.) high-purity targets, functional ceramics and structural devices, and provides OEM services.

Zinc Sulfide Properties
Other NamesZnS powder, zinc sulphide, zinc sulfide phosphor
CAS No.1314-98-3
Compound FormulaZnS
Molecular Weight97.45
AppearanceWhite to off-white Powder
Melting Point1830 °C
Boiling PointN/A
Density4.1 g/cm3
Solubility in H2ON/A
Poisson's Ratio0.28
Specific Heat520 J/kg-K
Thermal Conductivity 27 W/m-K
Thermal Expansion6.5 µm/m-K
Young's Modulus75 GPa
Zinc Sulfide Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Flash PointN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
RTECS NumberZH5400000
Transport InformationNONH for all modes of transport
WGK Germanynwg



How is Niobium Carbide NbC powder produced?

Overview of Niobium Carbide NBC Powder

Niobium carbide (NBC and Nb2C) is a very hard refractory ceramic material used commercially for cutting tool tips. It is usually processed by sintering and is a commonly used additive in cemented carbide as a grain growth inhibitor. The appearance is brown-gray metal powder with purple luster and strong corrosion resistance.

How is Niobium Carbide NbC powder produced?

Niobium pentoxide reduction method:

Niobium carbide can be obtained by heating niobium oxide in a vacuum at 1800°C and adding coke.

In industry, niobium carbide is usually prepared from niobium pentoxide and carbon black as raw materials: niobium pentoxide and carbon black are firstly mixed with carbide raw materials in proportion, and put into a graphite crucible. Heating hydrogen or vacuum to 1600~1800℃, carbonization for the first time, then adding carbon black, mixing it, heating to 1800~1900℃ under hydrogen or vacuum, secondary carbonization, this is niobium carbide.

{xunruicms_img_title}

Application of Niobium Carbide NBC Powder

Niobium carbide NBC powder can partially replace tantalum carbide and is widely used in refractory high temperature materials and cemented carbide additives

As a cemented carbide additive, niobium carbide is a solid solution component of ternary and quaternary carbides, such as WC-NBC-C ternary system.

Niobium carbide NBC powder can also be used to make purple artificial gemstones.

Niobium carbide NBC powder price

The price of niobium carbide NBC powder will vary randomly with the production cost, transportation cost, international situation, exchange rate and market supply and demand of niobium carbide NBC powder. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Niobium Carbide NBC Powder, please feel free to send an inquiry for the latest price of Niobium Carbide NBC Powder.

Niobium Carbide NBC Powder Suppliers

As a global supplier of niobium carbide NBC powders, Tanki New Materials Co., Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced technology and engineered materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics and structural devices, and can provide OEM services.

More information about Niobium Carbide
Niobium Carbide Properties (Theoretical)
Compound FormulaNbC
Molecular Weight104.92
AppearanceGray Black Powder
Melting Point3490℃
Boiling PointN/A
Density7.82 g/cm3
Solubility in H2OInsoluble
Exact Mass105.914223
Niobium Carbide Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport InformationN/A


The preparation method of lithium sulfide

Lithium Sulfide Overview

Lithium sulfide, molecular formula: Li2S, is lithium sulfide, molecular weight: 45.95. White to yellow crystals. Has an anti-fluorite structure. The specific gravity is 1.66 (water = 1), the melting point is 938°C, and the boiling point is 1372°C. Soluble in water, soluble in ethanol, soluble in acid, insoluble in alkali. as a potential electrolyte material in rechargeable lithium-ion batteries.

The preparation method of lithium sulfide

Lithium sulfide can be prepared by a variety of methods. In the past, lithium and sulfur have been co-heated for reaction, and lithium sulfide has been prepared by reducing lithium sulfate with carbon or hydrogen under heating conditions. Later, it was found that lithium sulfide can be obtained by the action of lithium and sulfur in liquid ammonia, or by the decomposition of lithium ethoxide into the ethanol adduct of lithium hydrosulfide. Since then, some people have used lithium pentoxide to react with hydrogen sulfide to first obtain lithium hydrosulfide, and then decompose lithium hydrosulfide in vacuum to prepare lithium sulfide.

High quality anhydrous lithium sulfide can be prepared by reacting metallic lithium with hydrogen sulfide in tetrahydrofuran.

{xunruicms_img_title}

Application of lithium sulfide Li2S powder

Lithium sulfide (Li2S) is a product specially designed for high-performance batteries and can be used as an electrode material or as a precursor for solid electrolytes. As an electrode material, it not only has high capacity, but also overcomes many problems brought by pure sulfur electrodes.

The lithium sulfide Li2S powder is an anti-fluorite semiconductor (with a band gap of 3.865 eV). It exists in orthogonal and cubic structures. The densities of the orthorhombic and cubic structures are 1.75g/cm3 and 1.63g/cm3, respectively.

Lithium sulfide Li2S powder has been studied as a superconductor similar to MgB2. It is also used as a cathode material for rechargeable lithium-sulfur batteries.

Lithium sulfide Li2S powder price

The price of lithium sulfide Li2S powder will change randomly with the production cost, transportation cost, international situation and market supply and demand of lithium sulfide Li2S powder. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for lithium sulfide Li2S powder, please feel free to send an inquiry to get the latest price of lithium sulfide Li2S powder.

Lithium sulfide Li2S powder supplier

As a global lithium sulfide Li2S powder supplier, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced engineering materials. The company has successfully developed a series of powder materials (chromium sulfide, zinc sulfide, nickel sulfide), high-purity target materials, functional ceramics and structural devices, and provides OEM services.

Gallium Sulfide Health & Safety Information
Signal WordDanger
Hazard StatementsH301-H314
Hazard CodesC
Risk Codes22-31-34
Safety Statements26-36/37/39-45
Transport InformationUN 2923 8/PG 2



Preparation method of tungsten boride

Tungsten Boride WB2 Powder Overview

Tungsten boride, CAS number 12007-09-9, molecular formula BW, molecular weight 194.651, black powder, crystal WB belongs to tetragonal system. Tungsten boride is mainly used for wear-resistant coating wear-resistant layer and semiconductor thin film.

{xunruicms_img_title}

Preparation method of tungsten boride

The synthesis method of ditungsten boride is as follows:

1. Use metal tungsten and boron as raw materials, mix and grind them fully, heat and react at above 1400℃ to obtain tungsten boride, continue to react to generate W2B, and then cool and pulverize to obtain the product.

2. Mix tungsten and stoichiometric boron powder in a molar ratio of W:B=2:1, and sinter at 1200-1300℃ in vacuum or argon atmosphere to obtain ditungsten monoboride.

3. Using the solid phase method. Tungsten boride is prepared from metal tungsten and boron. The reaction formula is as follows. The stoichiometric amount of metal tungsten powder and elemental boron are fully mixed, ground, and shaped, and heated and reacted at above 1400 ° C to obtain tungsten boride. Continue the reaction to generate W2B, which is cooled and pulverized to obtain the product.

Application of tungsten boride WB2 powder

Abrasion resistant coatings for wearing parts and semiconductor thin films. Storage conditions of tungsten boride WB2 powder: wet agglomeration affects the dispersion performance and use effect of WB2 powder, so tungsten boride WB2 powder should be sealed in vacuum packaging. WB2 powder should not be exposed to air. Also, avoid using WB2 powder under pressure. Packaging and Shipping of Tungsten Boride WB2 Powder: We have many different types of packaging, depending on the quantity of Tungsten Boride WB2 powder. Tungsten boride WB2 powder packaging: vacuum packaging. 100g.500g or 1kg/bag.25kg/drum or as your request.

Tungsten boride WB2 powder price

The price of tungsten boride WB2 powder will change randomly with the production cost, transportation cost, international situation, exchange rate and supply and demand of tungsten boride WB2 powder market. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for tungsten boride WB2 powder, please feel free to send an inquiry to get the latest price of tungsten boride WB2 powder.

Tungsten Boride WB2 Powder Supplier

As a global supplier of tungsten boride WB2 powder, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics and structural devices, and provides OEM services.

Tungsten Diboride Properties
Other Namestungsten boride, WB2 powder, tungsten boride WB2
CAS No.12007-09-9
Compound FormulaWB2
Molecular Weight205.5
AppearanceGray Black Powder
Melting Point2365 °C
Boiling PointN/A
DensityN/A
Solubility in H2ON/A
Vickers Hardness20 GPa
Exact Mass205.969544 g/mol
Tungsten Diboride Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport InformationN/A



Application Fields of 316L Stainless Steel Powder

316L Stainless Steel Powder: Application Fields

316L Stainless Steel Powder This metal powder is used widely in many fields because of its outstanding corrosion resistance. Here is a detailed guide to using 316L powder in various fields.

1. Aerospace field

In the aerospace industry, 316L stainless powder is widely used for high-strength, corrosion-resistant components. The oxidation and high-temperature resistance of 316L steel powder allows it to maintain a stable performance even in harsh conditions such as high temperature and pressure. It also ensures that the aircraft can operate safely and reliably. 316L stainless powder can be used to produce high-temperature jet engine components, such as combustion chambers and turbine blades. These components can withstand up to 600°C temperatures.

Additionally, 316L powder is used for manufacturing structural components of high strength in aerospace vehicles. These include beams and frames. Due to the excellent processing and weld performance, it is easily processed into various structural components, which ensure their dimensional stability and accuracy.

2. Petrochemical Industry

316L powder is widely used in the petrochemical industries to make high-strength equipment and pipelines that are corrosion resistant. The 316L stainless steel powder has excellent corrosion resistance and can resist various chemical substances. This ensures the long-term stability of the equipment. In the manufacturing of petrochemical machinery, 316L stainless powder is used for high-temperature high-pressure pipelines and containers. This can withstand corrosion from various chemicals, while ensuring its sealing and strength.

Additionally, 316L stainless powder is used for manufacturing filters, separators, catalyst carriers, and other components within the petrochemical industry. Its high temperature and corrosion resistance ensure that 316L can be used to improve the efficiency of production and maintain equipment for a long time.

Medical field

316L stainless-steel powder is widely used in the medical field to manufacture medical implants and devices of high standards. In the medical field, 316L stainless steel powder is widely used for the manufacture of high-quality implants and medical devices. In manufacturing artificial joints and prostheses as well as other implants, 316L Stainless Steel Powder is used for support structures and connectors. It ensures strength and stability as well as corrosion and wear resistance.

316L powder is used extensively in the medical industry to manufacture surgical instruments and medical devices of high standards. Due to its high processing and weld performance, it is possible to manufacture complex-shaped devices, which improves the reliability of medical equipment.

4. Industrial sector

In the industry, 316L stainless powder is widely used for manufacturing high-strength corrosion-resistant equipment and components. You can use it to make high-quality mechanical elements such as bolts, springs, chemical equipment and ship components. The excellent corrosion resistance and anti-oxidant performance of this material can help to ensure that the equipment will operate smoothly for a long time and increase production efficiency.

The power and electronic industries are also major users of 316L powder. In manufacturing electronic components and battery shells for example, 316L steel powder is used. It can enhance the quality and safety of products.

Summary: 316L stainless-steel powder has numerous applications.

About KMPASS

KMPASS is a global chemical supplier & manufacturer that has over 12 year experience in providing high-quality Nanomaterials and chemicals. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our team offers perfect solutions that can help industries improve their efficiency, create value and overcome various challenges. Send an email to Sales2@nanotrun.com for 316L powder.

The role of molybdenum in the new energy industry

Molybdenum's role in the New Energy Industry

I. Introduction

As a result of the recent changes in the global energy market, the energy sector is growing rapidly. The future energy market will include solar energy, biomass, wind, water, geothermal and many other fields. Renewable energy is used as the raw material. The energy sector of tomorrow will be dominated by molybdenum because it is rare. This article will examine the characteristics, principles, and application areas for molybdenum so that you can understand the importance of this element in the current energy industry.

2. Property of molybdenum

Molybdenum has high melting, boiling and strength properties, as well as corrosion resistance. Its chemical property is relatively stable, and it's insoluble in water. The molybdenum dioxide has excellent thermal and electrical stability. This makes it an important component of the new Energy Industry.


3. Molybdenum's role in the New Energy Industry

solar industry

Solar energy refers to an industry that converts and uses solar energy. Molybdenum compounds and their derivatives play a major role in the Solar Industry.


(1) Photovoltaic Material: The molybdenum material is a good photovoltaic because it has high conversion efficiency. Molybdenum can be added to solar cells in small amounts to improve their photoelectric conversion and lifetime.


Molybdenum can be used in high-temperature equipment like solar collectors, solar boilers, and other high-temperature devices.

Wind Energy Industry


Wind energy is an industry that uses the wind to convert and use energy. Molybdenum compounds and molybdenum play important roles in wind energy.


(1) Wind turbines. Molybdenum, and its alloys, have excellent strength and corrosion resistance properties. They can be used in the manufacture of key components of wind turbines such as the blades and the main shafts to increase the safety and service life.


(2) Lubricants. Molybdenum compounds and their compounds are excellent lubricants and can reduce the friction loss of wind turbines and equipment failure rates.


Hydropower industry

Hydropower refers to an industry that uses water energy as a source of energy. Molybdenum compounds and molybdenum play important roles in hydropower.

Molybdenum can be used for key components like blades and main shafts in hydrogenerator units. This will improve the life expectancy and safety of equipment.


(2) Fluid accessories. Molybdenum compounds and their derivatives have excellent fluidity, corrosion resistance, and can be used in fluid accessories to improve fluid efficiency and durability for hydroelectric generation sets.


Geothermal Energy Industry

Geothermal energy is an industry that uses the geothermal heat to convert and utilize energy. Molybdenum compounds and molybdenum play important roles in geothermal energy.

(1) Geothermal equipment: Molybdenum can be used in the manufacture of key components, such as heat-exchangers and boilers for geothermal equipment to improve thermal stability and efficiency.


Molybdenum can be used for the production of components like heat exchangers, pipes, and other geothermal equipment. This will improve the thermal efficiency and durability.

Biomass Energy Industry

The biomass energy industry uses biomass energy to convert and utilize energy. Molybdenum compounds and molybdenum play important roles in the bioenergy industry.


Molybdenum can be used for the production of boilers and burners in biomass combustion equipment. This will improve their thermal stability and efficiency.


Molybdenum is a good catalyst and can be used in the production of biofuels to increase yield and improve quality.


4. Molybdenum applications in the new energy sector

Solar power generation. Molybdenum has a major role to play in the solar cell and is an important material for solar energy generation systems.

Molybdenum has a significant role to play in wind power generation.

Molybdenum has a vital role to play in the hydroelectric generation of power. It is a critical material for hydropower systems.

Molybdenum has a major role to play in the production of geothermal electricity. It is also a critical material for these systems.

Molybdenum has a vital role to play in the production of biofuels and in the combustion equipment used for biomass.


5. Molybdenum in the new energy sector

Molybdenum demand will increase with the rapid development in the new energy industry. Gleichzeitig, due to the rapid development of technology and cost reduction, molybdenum applications in the new industry will increase. Molybdenum's application in the new energy sector will expand further, contributing to the growth of green power.

Application Fields of Nickel Based Alloys

Nickel Based Alloys - Application Fields

Nickel-based alloy Based on nickel, it is made up of several alloying materials. It is used for its high-temperature properties, corrosion resistance and oxidation resistant as well as mechanical properties in the aviation, aerospace and petrochemical industries. This article will give a detailed description of the Applications of nickel-based alloys in different fields such as aerospace, petrochemicals and power energy. It also provides references for Research and Application.

Applications of nickel-based alloys to the aerospace industry

The aerospace sector is one important area for the application. Nickel-based alloys These are the main components used in aerospace to produce high-performance products like aircraft, rockets and satellites.

Aircraft engine components

Aircraft engines include:

* The aviation industry's core equipment.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

Mechanical properties

Nickel-based metals exhibit excellent strength at high temperatures, as well as creep and fatigue resistance. The alloys are used for many aircraft engine parts, including turbine blades and guides.

Rocket engine components

Rocket engines are key equipment in the launch of satellites and space probes. They require materials with extreme high-temperature strengths and corrosion resistance. Nickel-based alloys In the manufacture of rocket engines are commonly used key components like combustion chambers. nozzles and turbine disks.

Satellite structural components

Satellites' structural components need materials with high temperature resistance, corrosion resistance and dimensional stabilities. Many structural components, including solar panels and structural frame frames, are manufactured using nickel-based materials.

Use of nickel-based alloys for the petrochemical Industry

The petrochemical industries is another area where nickel-based materials are used. Nickel-based alloys are mainly used in the manufacture of key equipment, such as high temperature and high pressure reactors and pipes in the petrochemical industries.

High-temperature reactor

High-temperature Reactors are:

* The core equipment of the petrochemical industries.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

Alloys based on nickel have excellent mechanical, corrosion and high-temperature properties. High-temperature reactors like hydrogenation reactors or reforming reactors are made with these alloys.

High-pressure pipeline

In the petrochemical industries, high-pressure pipes are essential equipment. Materials with excellent corrosion resistance, high-pressure resistance and mechanical properties are required. Nickel-based materials are used for high-pressure pipe manufacturing because of their excellent high-pressure resistance, corrosion resistance, mechanical properties, and strength.

Applications of nickel-based materials in the field power energy

The electric energy sector is another area where nickel-based materials are used. These alloys are primarily used to manufacture high-temperature heat-exchangers and gas-turbines.

High-temperature heat exchanger

The high-temperature heat-exchangers in the power and energy industry are essential equipment. Materials with excellent resistance to corrosion, as well as mechanical properties, are required. Nickel-based materials have excellent mechanical, corrosion-resistant, and high-temperature properties. The alloys are widely used for high-temperature exchangers like air preheaters or flue gas exchangers found in coal-fired electricity stations.

Gas turbine blades

Gas turbines can be:

* Equipment for energy conversion and electricity generation.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

In the manufacture of gas turbine blades and other key components, nickel-based materials are used widely.

Applications of nickel-based alloys to biomedicine

Biomedical applications are another important area for nickel-based metals. These alloys are used to manufacture medical devices like artificial joints and vascular scaffolds.

Artificial joint

Artificial joints can be:

* Medical devices to replace damaged joints.

* Requires materials with excellent corrosion resistance.

* Biocompatibility.

* Mechanical properties

Alloys based on nickel have excellent corrosion resistance and biocompatibility. They are also used to manufacture artificial joints.

Vascular stent

Materials with high corrosion resistance, biocompatibility and flexibility are required for vascular stents. Nickel-based materials are highly corrosion resistant, biocompatible, and flexible and are widely used for vascular devices.

As a summary, nickel-based materials have been extensively used in aerospace and petrochemicals as well as power energy and biomedicine. In the future, with the development of technology, it is expected that nickel-based materials will be more widely used, and they will contribute to industrial and technological development.

About KMPASS

KMPASS is a global chemical supplier & manufacturer that has over 12 year experience in providing high-quality Nanomaterials and chemicals. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. You can contact us at sales2@nanotrun.com if you need Inconel powder.

CLC blocks and foamed concrete lead the reform of the construction industry

CLC Blocks and foamed Concrete, two new energy-saving materials that are environmentally friendly, lead the way to the renovation of the construction sector.

As environmental awareness continues to improve, the construction industry is now focusing on more energy-saving and environmentally friendly building materials.

The construction industry has been gradually adopting CLC block as an environmentally friendly, energy efficient, and durable wall material.

CLC block It is an energy-saving material for walls made from fly ash, cement, river sand and slag.

Its characteristics include high strength, lightweight, heat insulation, noise insulation, thermal insulation. It also has a convenient and efficient design, and a long life span.

Compare with the traditional clay brick CLC block It has many benefits.

CLC blocks reduce pollution and production costs by using a variety of raw materials. These include cement, slag, and other industrial wastes as well as natural materials like river sand.

The CLC block is also light and strong, which allows it to reduce the weight and improve the performance of the structure.

CLC blocks have excellent thermal insulation as well as sound insulation and thermal resistance, which can help to improve the performance and comfort of your building.

Construction of CLC block can be convenient and quick, allowing for a shorter construction period.

A new wall material, foam concrete, has also attracted a lot of attention.

The building material is lightweight, strong, and thermally and acoustically insulating. It's made up of raw materials, such as foaming agent, cement and foam agent.

In comparison with traditional concrete, the foam concrete not only has a better thermal insulation and sound insulation, but can also reduce self-weight.

Foamed concrete is made from cement and foaming agent. The foam structure of the foamed material is created through mixing and foaming.

This foam structure is able to make concrete lighter and soundproof. It can also insulate heat.

The foam concrete can also meet the needs of building structures in terms load-bearing and durability.

New wall materials have a wide range of applications in the construction industry. CLC block The foam concrete range is quite broad.

You can use them for the exterior and interior walls as well as thermal and sound insulation.

These materials also have characteristics that are compatible with the current trend in the construction industry, including a simple production process, low costs, and good environmental performance.

The construction industry is gradually becoming more interested in and favoring the new wall materials CLC Block and foam concrete due to their outstanding performance and extensive application potential.

It is expected that, in the future, due to the development of science and technologies, these materials will become more important and play a greater role in the building industry. They are also believed to promote the greening up of the construction sector.

Newsstrikevector is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newsstrikevector.